A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems

We propose a structure-preserving doubling algorithm for a quadratic eigenvalue problem arising from the stability analysis of time-delay systems. We are particularly interested in the eigenvalues on the unit circle, which are difficult to compute. The convergence and backward error of the algorithm are analyzed and three numerical examples are presented. Our experience shows that the algorithm...

متن کامل

Structure-Preserving Algorithms for Palindromic Quadratic Eigenvalue Problems Arising from Vibration of Fast Trains

In this paper, based on Patel’s algorithm (1993), we proposed a structure-preserving algorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship between the structure-preserving algorithm and the URV-based structure-preserving algorithm by Schröder (2007). For large sparse palindromic QEPs, we develop a generalized >skew-Hamiltonian implicity-restarted ...

متن کامل

An Improved Structure- Preserving Doubling Algorithm For a Structured Palindromic Quadratic Eigenvalue Problem

In this paper, we present a numerical method to solve the palindromic quadratic eigenvalue problem (PQEP) (λA+λQ+A)z = 0 arising from the vibration analysis of high speed trains, where A, Q ∈ Cn×n have special structures: both Q and A are m × m block matrices with each block being k × k, and moreover they are complex symmetric, block tridiagonal and block Toeplitz, and also A has only one nonze...

متن کامل

Solving a Structured Quadratic Eigenvalue Problem by a Structure-Preserving Doubling Algorithm

In studying the vibration of fast trains, we encounter a palindromic quadratic eigenvalue problem (QEP) (λ2AT +λQ+A)z = 0, where A,Q ∈ Cn×n and QT = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upperright corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts w...

متن کامل

Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods

Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2010

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.09.010